Propositional and First Order Logic: Basics

Why Logic?

Express complicated things in a succinct way

 Then make inferences.```
All students like KT.
>>>>I learned something.
Alice does not like KT.
>>>>I learned something.
Is Alice a student?
>>>>NO
```


## Natural Language

A cent is better than nothing
Nothing is better than world peace
A cent is better than world peace

Natural language is slippery

## Ingredients of a logic

Syntax: defines a set of valid formulas
What kinds of expressions are valid on this language.
Semantics: for each formula specify a set of models
What each formula means
Reasoning: given a set of formulas which rules can be applied to derive new information

## Logics in this Class

- Propositional Logic
- First Order Logic
- Description Logic


## Expressivity vs Computational efficiency

## Propositional Logic

The simplest, and most abstract logic we can study is called propositional logic.
Definition: A proposition is a statement that can be either true or false; it must be one or the other, and it cannot be both.

- EXAMPLES. The following are propositions:
- All humans are mortal
- Socrates is human
- Socrates is mortal
whereas the following are not:
are you going out somewhere?
$-2+3$


## Syntax -The Alphabet

The alphabet of the Propositional Logic is composed of:
Connectives:
$\neg$ (negation), $\wedge$ (conjunction), $\vee$ (disjunction), $\Rightarrow$ (implication), $\Leftrightarrow$ (biconditional)

Parenthesis: (, )
Propositional Symbols (or propositional variables): P, Q, R

## Syntax -Well formed formulas

## Propositional Symbols (atomic formulas): P, Q, R, ...

Formula: if $f, g$ are formulas, so are the following:

- ( $\neg f)$
- (f $\wedge g)$
- $(f \vee g)$
- $(f \Rightarrow g)$
- $(f \Leftrightarrow g)$

Nothing else is a formula.

## Parenthesis elimination: Precedence

| 1. | $\neg$ |
| :--- | :--- |
| 2. | $\wedge$ |
| 3. | $\vee$ |
| 4. | $\Rightarrow$ |
| 5. | $\Leftrightarrow$ |

Thus $P \vee Q \rightarrow \neg R$ is equivalent to $(P \vee Q) \rightarrow(\neg R)$.
If the intended meaning is $P \vee(Q \rightarrow \neg R)$ then parentheses must be used.

## Syntax -Well formed formulas

## Propositional Symbols (atomic formulas or atoms): P, Q, R,...

Formula: if $f, g$ are formulas, so are the following:

- ( $\neg f)$
- (f $\wedge \mathbf{g})$
- $(f \vee g)$
- $(f \Rightarrow g)$
- $(f \Leftrightarrow g)$

$$
\begin{aligned}
& A \\
& \neg \neg A \\
& \neg A \Rightarrow B \\
& \neg A \wedge(\neg A \Rightarrow B) \Rightarrow \neg A \vee \\
& C \\
& \neg A(\neg A \Rightarrow B) \Rightarrow \neg A \vee C \\
& \neg A(\neg A \Rightarrow B) \neg A \vee C \\
& A+B
\end{aligned}
$$

## Semantics -Interpretation

In expression $\mathrm{E}: ~ \mathrm{a} * \mathrm{~b}+2$,
Assign values to $a$ and $b$ and then evaluate the expression.
For example, if $a=2$ and $b=3$ then $E$ evaluates to 8
In propositional logic, truth values are assigned to the atoms of a formula in order to evaluate the truth value of the formula

Definition: Let $\mathbf{A}$ be a formula and let $\mathbf{P}_{\mathbf{A}}$ be the set of atoms appearing in $A$. An interpretation for $A$ is a total function $I_{A}: P_{A} \rightarrow\{T, F\}$ that assigns one of the truth values $T$ or $F$ to every atom in $P_{A}$.

## Truth Tables

| $p$ | $q$ | $p \wedge q$ |
| :---: | :---: | :---: |
| $F$ | $F$ | $F$ |
| $F$ | $T$ | $F$ |
| $T$ | $F$ | $F$ |
| $T$ | $T$ | $T$ |


| $p$ | $q$ | $p \vee q$ |
| :---: | :---: | :---: |
| $F$ | $F$ | $F$ |
| $F$ | $T$ | $T$ |
| $T$ | $F$ | $T$ |
| $T$ | $T$ | $T$ |


| $p$ | $q$ | $p \Rightarrow q$ |
| :---: | :---: | :---: |
| $F$ | $F$ | $T$ |
| $F$ | $T$ | $T$ |
| $T$ | $F$ | $F$ |
| $T$ | $T$ | $T$ |


| $p$ | $q$ | $p \Leftrightarrow q$ |
| :---: | :---: | :---: |
| $F$ | $F$ | $T$ |
| $F$ | $T$ | $F$ |
| $T$ | $F$ | $F$ |
| $T$ | $T$ | $T$ |


| $p$ | $\neg p$ |
| :---: | :---: |
| $F$ | $T$ |
| $T$ | $F$ |

If $p$ is false, then we don't care about $q$, and by default, make $p \Rightarrow q$ evaluate to $T$ in this case

## Equivalences

Two formulas are logically equivalent if the columns in a truth table giving their truth values agree.

We write this as $\mathrm{p} \equiv \mathrm{q}$
De Morgan Laws:

- $\neg(P \vee Q) \equiv \neg P \wedge \neg Q$
- $\neg(P \wedge Q) \equiv \neg P \vee \neg Q$


## Important Logical Equivalences

Domination laws:
Identity laws:

$$
p \vee \mathbf{T} \equiv \mathbf{T}, p \wedge \mathbf{F} \equiv \mathbf{F}
$$

Idempotent laws:

$$
p \wedge \mathbf{T} \equiv p, p \vee \mathbf{F} \equiv p
$$

Double negation law:

$$
p \wedge p \equiv p, p \vee p \equiv p
$$

Negation laws:

$$
\neg(\neg p) \equiv p
$$

$$
p \vee \neg p \equiv \mathbf{T}, p \wedge \neg p \equiv \mathbf{F}
$$

The first of the Negation laws is also called "law of excluded middle". Latin: "tertium non datur".
Commutative laws: $p \wedge q \equiv q \wedge p, p \vee q \equiv q \vee p$
Associative laws:

$$
(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)
$$

$$
(p \vee q) \vee r \equiv p \vee(q \vee r)
$$

Distributive laws:
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
$p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r)$
Absorption laws:

$$
p \vee(p \wedge q) \equiv p, p \wedge(p \vee q) \equiv p
$$

## More Logical Equivalences

## TABLE 7 Logical Equivalences

 Involving Conditional Statements.$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

## Inference Rules

F (a set of formulas) +inference rules derivation of new formulas
Example:
Modus Ponens (simple edition):

$$
A \quad A \rightarrow B
$$

B

## Satisfiability, Tautology, Contradiction

A formula is:

- satisfiable, if its truth table contains true at least once. Example: $p \wedge q$.
- a tautology, if it is always true. Example: $p \vee \neg p$.
- a contradiction, if it always false. Example: $p \wedge \neg p$.
- a contingency, if it is neither a tautology nor a contradiction. Example: $p$.


## Conjunctive Normal Form

A literal is either an atomic formula, or the negation of one.
Examples: $\mathrm{p}, \neg \mathrm{p}$.
A clause is a disjunction of literals.
Example: $p \vee \neg q \vee r$.
A formula in conjunctive normal form (CNF) is a conjunction of clauses.
Example: $(p \vee \neg q \vee r) \wedge(\neg p \vee \neg r)$

## Transformation into Conjunctive Normal Form

1. Express all other operators by conjunction, disjunction and negation.
2. Push negations inward by De Morgan's laws and the double negation law until negations appear only in literals.
3. Use the commutative, associative and distributive laws to obtain the correct form.
4. Simplify with domination, identity, idempotent, and negation laws.

## Example: Transformation into CNF

Transform the following formula into CNF.

$$
\neg(p \rightarrow q) \vee(r \rightarrow p)
$$

1. Express implication by disjunction and negation.

$$
\neg(\neg p \vee q) \vee(\neg \vee p)
$$

2. Push negation inwards by De Morgan's laws and double negation.

$$
(p \wedge \neg q) \vee(\neg r \vee p)
$$

3. Convert to CNF by associative and distributive laws.

$$
(p \vee \neg r \vee p) \wedge(\neg q \vee \neg r \vee p)
$$

4. Optionally simplify by commutative and idempotent laws.

$$
(p \vee \neg r) \wedge(\neg q \vee \neg r \vee p)
$$

and by commutative and absorption laws

$$
\text { ( } \mathrm{p} \vee \neg \mathrm{r} \text { ) }
$$

## Limitations of Propositional Logic - Example

Alice and Bob like KT.

AliceLikesKT ^ BobLikesKT

All students like KT.
AlicelsAStudent $\rightarrow$ AliceLikesKT
BoblsAStudent $\rightarrow$ BobLikesKT

Every integer greater than 2 is the sum of two primes

## Limitations of Propositional Logic

Propositional Logic has limited expressive power
It is more natural to describe the knowledge of the world with Objects and Predicates.

In First Order Logic:
Propositions have more internal structure:

$$
\text { AliceLikesKT } \quad \Longleftrightarrow \text { (Alice,likes, KT) }
$$

Quantifiers and variables: all, some quantifiers apply to variables. All applies to each student/integer we don't want to enumerate them all

## First Order Logic

First-order logic can be understood as an extension of propositional logic. In propositional logic the atomic formulas have no internal structure.

They are propositional variables that are either true or false.
In first-order logic:

- atomic formulas are predicates that assert a relationship among certain elements.
- quantification: the ability to assert that a certain property holds for all elements or that it holds for some element.


## First Order Logic -Examples

Alice and Bob like KT.
likes(alice,kt) ^ likes(bob,kt)
All students like KT.
$\forall x$ Student $(x) \rightarrow$ likes $(x, K T)$

## Syntax

First order Logic is composed of:
Connectives:
$\neg$ (negation), $\wedge$ (conjunction), $\vee$ (disjunction), $\Rightarrow$ (implication), $\Leftrightarrow$ (biconditional)
Parenthesis: (, )
An infinite set of variables (Vars): $\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \boldsymbol{x}_{3}, \ldots$
Quantifier symbols: $\exists$ (existential quantifier), $\forall$ (universal quantifier)
Equality symbol: =

## Syntax

Constant symbols: John, Mary, 5, 6, Ball123, ...
Function symbols: FatherOf( $\cdot$ ), BestFriendOf( $\cdot$ ), Cosine $(\cdot)$, Sum $(\cdot, \cdot)$,
Predicate symbols: Happy ( $\cdot$ ), FatherOf( $\cdot, \cdot)$, Arrives $(\cdot, \cdot, \cdot)$

Functions are different from predicates!
A function takes one or more arguments, and returns a value.
A predicate takes one or more arguments, and is either true or false.

## Syntax

Term $\rightarrow$ ConstantSymbol | Variable | FunctionSymbol(Term, . . . , Term)

$$
\begin{gathered}
\text { John } \\
x \\
\text { FatherOf(John }) \\
\text { WifeOf(FatherOf(x)) } \\
\operatorname{Sum}(1,2) \\
\operatorname{Sum}(x, \operatorname{Sum}(1,2))
\end{gathered}
$$

Terms are used to represent the objects of our world

## Syntax

```
AtomicFormula }->\mathrm{ Term = Term | PredicateSymbol(Term, . . , Term)
 John =ElderSonOf(Mary)
John = ElderSonOf(FatherOf(John))
 Sum(1,Sum(2,3))=6
 Happy(John)
 EvenNumber(Sum(1, Sum(2,3))
 LivesIn(John, London)
 Arrives(John, Athens, Monday)
```

Atomic Formulas are used to represent facts or simple relationships between the objects of our world

## Syntax

## Well-formed formulas

Wff $\rightarrow$ AtomicFormula | ( Wff ) | $\neg$ Wff | Wff BinaryConnective Wff |
( Quantifier Variable ) Wff

## WFF Examples

$$
\begin{gathered}
\neg \text { Loves }(\text { Tony, Mary }) \\
\text { Loves }(\text { Tony, Paula }) \vee \operatorname{Loves}(\text { Tony, Fiona }) \\
\text { Loves }(\text { John, Paula }) \wedge \text { Loves }(\text { John, Fiona }) \\
(\forall x)(\text { SportsCar }(x) \wedge \text { HasDriven }(\text { Mike }, x) \Rightarrow \text { Likes }(\text { Mike, } x)) \\
(\exists x)(\text { SportsCar }(x) \wedge \text { Owns }(\text { John, } x)) \\
\forall x)(\operatorname{Greek}(x) \wedge(\forall y)(\operatorname{IsChildOf}(y, x) \Rightarrow \operatorname{UniversityAlumni}(y)) \Rightarrow \operatorname{Proud}(x))
\end{gathered}
$$

## Syntax

A free variable is a variable that is not bound by an quantifier, e.g. $\exists \mathrm{y} \operatorname{Likes}(\mathrm{x}, \mathrm{y})$ : x is free, y is bound.

A sentence is a well-formed formula in which all variables are quantified (no free variable)

Example:

$$
\text { Sentence: }(\forall x)(\operatorname{Cat}(x) \Rightarrow \operatorname{Mammal}(x))
$$

Not a sentence: Brother(x, John)

## Natural Language to FOL

The world is composed of:
objects (Mary, John, vase, desk)
Objects participate in relations with other objects. Some of these relations are functions.

## Examples:

> John loves Mary
> John is father of Peter

The relations between objects can be true or false.

## Natural Language to FOL

Nouns describe the entities of the domain of interest:
Mary, John, vase
Nouns can be represented with constants in FOL
Verbs are used to express an action, an occurrence, or a state of being

> John loves Mary
> Jack broke the vase
> John is sleeping

Verbs can be replaced with predicates in FOL

## Natural Language to FOL

Nouns describe the entities of the domain of interest:
Mary, John, vase
Nouns can be represented with constants in FOL
Verbs are used to express an action, an occurrence, or a state of being

| John loves Mary | loves(John, Mary) |
| :---: | :---: |
| Jack broke the vase | broke(Jack,vase) |
| John is sleeping | Asleep(John) |

Verbs can be replaced with predicates in FOL

## Natural Language to FOL

John is father of Peter (relationship between two objects of the world)
John = fatherOf(Peter)

Here we have two nouns, the relation between them, which is represented with a function and the "is" which is expressed with the " $=$ ".
We can also represent it with
isFatherOf(John,Peter)

But it is less accurate.
Function or Predicate? If we want to use the formula for inference then predicate representation is preferred.

## Natural Language to FOL

Adjectives are words that describe the qualities or states of being of nouns.
Jack is a clever dog.
Adjectives in FOL can be expressed with unary predicates:
Clever(Jack) ^ Dog(Jack)
NOT: Azor $=$ Clever(Dog) : "Clever" is a predicate
If an object belongs to a set of objects then this is represented with a unary predicate: Country(Greece)

## Natural Language to FOL

Greece and Bulgaria are countries:
Country(Greece) $\wedge$ Country(Bulgaria).
NOT: Country(Greece $\wedge$ Bulgaria)

## Observations

A sentence of the form "if....then..." implies the use of " $\rightarrow$ ".
A sentence including "...if and only if..." implies the use of " $\Leftrightarrow$ "
A sentence including "for all.." implies $\forall$
A sentence including "there exists.." implies $\exists$

## Rule of thumb:

The " $\forall$ " is combined with " $\rightarrow$ "
The " $\exists$ " is combined with " $\wedge$ "

## Example

Every king is a human

## Example

## Every king is a human

i.e. if someone is a king then is human

## Example

## Every king is a human

i.e. if someone is a king then is human
i.e. for every x if x is a king then x is a human

## Example

## Every king is a human

i.e. if someone is a king then is human
i.e. for every x if x is a king then x is a human

$$
(\forall x)(\operatorname{King}(x) \Rightarrow \operatorname{Human}(x))
$$

## Quantifiers

The order of quantifiers of the same type is not important. The following formulas are equivalent:

$$
\begin{gathered}
(\forall x)((\forall y) \operatorname{Loves}(x, y)) \\
(\forall y)((\forall x) \operatorname{Loves}(x, y)) \\
(\forall x)(\forall y) \operatorname{Loves}(x, y) \\
(\forall y)(\forall x) \operatorname{Loves}(x, y)
\end{gathered}
$$

## Quantifiers

We can group them together:

$$
(\forall x, y) \operatorname{Loves}(x, y)
$$

$$
(\forall y, x) \operatorname{Loves}(x, y)
$$

## Quantifiers

The order of quantifiers of different type is important. The following formulas are not equivalent:

$$
(\forall x)(\exists y) \operatorname{Loves}(x, y)
$$

$$
(\exists x)(\forall y) \operatorname{Loves}(x, y)
$$

## Semantics

In the propositional logic, an interpretation is an assignment of truth values to atoms.

In the first-order logic, since there are variables involved, we have to do more than that.

To define an interpretation for a formula in the first- order logic, we have to specify: -the domain
-an assignment to constants, function symbols, and predicate symbols occurring in the formula

## Semantics (informal definition)

An interpretation of a formula $F$ in the first-order logic consists of: a nonempty domain D, and an interpretation function It that assigns "values" to each constant, function symbol, and predicate symbol occurring in $F$ as follows:
To each constant, we assign an element in $\boldsymbol{D}$.
To each n-place function symbol, we assign a mapping from $\boldsymbol{D}^{n}$ to $\boldsymbol{D}$. ( $\boldsymbol{D}^{n}$
$\left.=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \in \mathcal{D}\right\}\right)$.
To each n-place predicate symbol, we assign a mapping from $\mathcal{D}^{n}$ to $\{T, F\}$.
-When we evaluate the truth value of a formula in an interpretation over the domain $\boldsymbol{D},(\forall x)$ will be interpreted as "for all elements x in $\boldsymbol{\mathcal { D }}$ " and $(\exists \mathrm{x})$ as "there is an element in $\mathcal{D}$."

## Semantics (informal definition)

For every interpretation of a formula over a domain $\mathcal{D}$, the formula can be evaluated to T or F according to the following rules:
-If the truth values of formulas $G$ and $H$ are evaluated, then the truth values of the formulas $\sim G$, ( $G$ binaryConnective $H$ ) are evaluated by using the rules that hold in the propositional logic.
$-(\forall x) G$ is evaluated to $T$ if the truth value of $G$ is evaluated to $T$ for every $x$ in $\mathcal{D}$; otherwise, it is evaluated to $F$.
$-(\exists x) G$ is evaluated to $T$ if the truth value of $G$ is $T$ for at least one $x$ in $\mathbb{D}$; otherwise, it is evaluated to $F$.

## Semantics

Any formula containing free variables cannot be evaluated.
It should be assumed either that formulas do not contain free variables, or that free variables are treated as constants.

## Example

$$
\mathrm{G}=(\forall \mathrm{x})(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{f}(\mathrm{x}), \mathrm{a}))
$$

The interpretation I of G :
Domain: $D=\{1,2\}$
Assignment for $\mathrm{a}: \mathrm{a}=1$
Assignment for $f: f(1)=2, f(2)=1$
Assignment for $\mathrm{P}, \mathrm{Q}$ :

$$
\begin{aligned}
& P(1)=F, P(2)=T, Q(1,1)=T, \\
& Q(1,2)=T, Q(2, I)=F, Q(2,2)=T
\end{aligned}
$$

## Example

$$
\mathrm{G}=(\forall \mathrm{x})(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{f}(\mathrm{x}), \mathrm{a}))
$$

The interpretation I of G :
Domain: $D=\{1,2\}$
Assignment for $\mathrm{a}: \mathrm{a}=1$
Assignment for $f: f(1)=2, f(2)=1$
Assignment for $\mathrm{P}, \mathrm{Q}$ :

$$
\begin{aligned}
& P(1)=F, P(2)=T, Q(1,1)=T, \\
& Q(1,2)=T, Q(2, I)=F, Q(2,2)=T
\end{aligned}
$$

## Example

$$
\mathrm{G}=(\forall \mathrm{x})(\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{f}(\mathrm{x}), \mathrm{a}))
$$

The interpretation I of G :
Domain: $\mathcal{D}=\{1,2\}$
Assignment for $\mathrm{a}: \mathrm{a}=1$
Assignment for $f: f(1)=2, f(2)=1$
Assignment for $\mathrm{P}, \mathrm{Q}$ :
$P(1)=F, P(2)=T, Q(1,1)=T$,
$Q(1,2)=T, Q(2, I)=F, Q(2,2)=T$

If $x=1$, then:
$P(x) \rightarrow Q(f(x), a)$
$P(1) \rightarrow Q(f(1), a)$
$P(1) \rightarrow Q(2,1)$
$F \rightarrow F$
T.

If $x=2$, then:

$$
\begin{gathered}
\mathrm{P}(\mathrm{x}) \rightarrow \mathrm{Q}(\mathrm{f}(\mathrm{x}), \mathrm{a}) \\
\mathrm{P}(2) \rightarrow \mathrm{Q}(\mathrm{f}(2), \mathrm{a}) \\
\mathrm{P}(2) \rightarrow \mathrm{Q}(1,1) \\
\mathrm{T} \underset{\mathrm{~T}}{\rightarrow}
\end{gathered}
$$

## Since

$P(x) \rightarrow Q(f(x), a)$ is true for all elements x in D ,
then $G$ is true under the interpretation I

## Example

## Every king is a human.

Why not $(\forall \mathrm{x})(\mathrm{King}(\mathrm{x}) \wedge$ Human $(\mathrm{x}))$ ?

When does this become true?
Let $\mathrm{D}=\{$ eleni, george $\}$

## Equivalences in FOL

$$
\begin{aligned}
& (\forall x) \phi \equiv \neg(\exists x) \neg \phi \\
& (\exists x) \phi \equiv \neg(\forall x) \neg \phi \\
& (\forall x) \neg \phi \equiv \neg(\exists x) \phi \\
& (\exists x) \neg \phi \equiv \neg(\forall x) \phi
\end{aligned}
$$

$$
\begin{aligned}
& (\exists x)(\phi \vee \psi) \equiv(\exists x) \phi \vee(\exists x) \psi \\
& (\exists x)(\phi \wedge \psi) \models(\exists x) \phi \wedge(\exists x) \psi \\
& (\forall x) \phi \vee(\forall x) \psi \models(\forall x)(\phi \vee \psi) \\
& (\forall x)(\phi \wedge \psi) \equiv(\forall x) \phi \wedge(\forall x) \psi
\end{aligned}
$$

## Resources

## 

Lecture 16: Logic 1 - Propositional Logic | Stanford CS221: AI (Autumn 2019)
Lecture 17: Logic 2 - First-order Logic | Stanford CS221: AI (Autumn 2019)
Propositional Logic: Formulas, Models, Tableaux

https://opencourses.uoa.gr/modules/document/file.php/DI115/\�\�\�\�\�\�\�\�\�\�\� \%BD\%CE\%B5\%CE\%B9\%CE\%B5\%CF\%82/fol-syntax1spp.pdf
http://cgi.di.uoa.gr/~ys02/lectures/fol-semantics1spp.pdf)
Common Mistakes in FOL

